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Few-Photon Multiple Ionization of Ne and Ar by Strong Free-Electron-Laser Pulses
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Few-photon multiple ionization of Ne and Ar atoms by strong vacuum ultraviolet laser pulses from the
free-electron laser at Hamburg was investigated differentially with the Heidelberg reaction microscope.
The light-intensity dependence of Ne?" production reveals the dominance of nonsequential two-photon
double ionization at intensities of 7 <6 X 10'>2 W/cm? and significant contributions of three-photon
ionization as I increases. Ne?>" recoil-ion-momentum distributions suggest that two electrons absorbing
“instantaneously” two photons are ejected most likely into opposite hemispheres with similar energies.
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Single-photon-induced multiple ionization or excitation
of atoms and molecules has been central to atomic and
molecular physics research due to their prototype character
to explore electron-electron correlation. Experimental
milestones were, among others, kinematically complete
measurements on double ionization of He and H, (see,
e.g., [1,2]), the fundamental two-electron systems. Here
quantum mechanical ab initio calculations have emerged
since 1998, with predictions being in excellent agreement
with all available data such that single-photon double
ionization of He is considered to be understood [3] within
the validity of the dipole approximation. Multiphoton-
induced multiple ionization, at the other extreme, where
a couple of ten photons are typically needed using lasers in
the visible, has until the present day resisted any compre-
hensive theoretical description due to tremendous compli-
cations in solving the nonperturbative, few-particle
quantum problem (see, e.g., [4]).

Few-photon multiple ionization, e.g., the interaction of
two or three photons with two or more electrons, represents
one of the most fundamental nonlinear processes, bridges
the gap between the single- and multiphoton regimes, and,
thus, is of decisive importance to advance nonlinear theo-
ries. Mainly due to its perturbative nature at shorter wave-
lengths along with the fact that only a few photons are
involved, full quantum calculations are at the horizon [5].

The free-electron laser at Hamburg (FLASH) [6] deliv-
ering vacuum ultraviolet (VUV) photons at unprecedented
intensities, in combination with the most advanced multi-
particle detection systems, such as the Heidelberg reaction
microscope [7], open the door for performing kinemati-
cally complete experiments in this new regime. At not too
high intensities (/ = 10'3> W/cm?), multiphoton ionization
(MPI) can be expected to be the dominant process for
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many-electron removal. MPI contains two basic dynamical
processes: an indirect two-step, ‘‘sequential ionization™
(SI) mechanism and the direct one-step, ‘‘nonsequential
ionization” (NSI, here we adopt the frequently used SI,
NSI terminology). NSI requires that electrons are ionized
by simultaneous absorption of photons (not necessarily
coherent), whereas SI is a sequential absorption process
within the same light pulse from FLASH. Since for SI the
intermediate ionic state populated after the first, indepen-
dent ionization step is usually assumed to be relaxed in its
electronic ground state before further photons are ab-
sorbed, typically more photons are needed than for NSI
to reach the same final charge state. NSI, on the other hand,
due to its simultaneous rather than “‘step-by-step” charac-
ter, provides a much richer setting for photon-electron
interaction as well as electron-electron correlation mecha-
nisms, making it the more exciting process.

Differential experimental data for MPI represent the
most critical testing ground for theories. Besides the basic
character of such experiments, there is tremendous prac-
tical interest since these nonlinear processes govern the
interaction of the VUV radiation with matter in general
and have to be understood if more complicated reactions
with surfaces, bulk matter, or biological samples shall be
investigated.

Few experiments on total cross sections have been re-
ported so far. Recently, two-photon single ionization of He
was investigated by Laarmann et al. [8] with FLASH
radiation at the 98 nm wavelength. Nabekawa et al. [9]
observed the production of doubly charged He ions by two-
photon absorption using 42 eV high-harmonic radiation.
Again at 98 nm with FLASH, Wabnitz et al. [10] studied
multiple ionization of Ar and Xe atoms, and experimen-
tally determined multiply charged Xe?" yields were inter-
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preted in terms of the absorption of several VUV photons
with the help of an independent-particle model [11]. Here
q denotes the charge state of the ion. Very recently, Benis
et al. [12] observed two-photon double ionization of Ar
and Kr atoms by a superposition of harmonics.

In this Letter, we present momentum-resolved experi-
mental spectra for two- and three-photon double ioniza-
tion of Ne obtained with a reaction microscope at FLASH.
The data provide first information about the sum mo-
mentum of two emitted electrons supporting dominant
NSI two-photon contributions at light intensities of a few
10'2 W/cm? in accordance with the recorded intensity
dependence of Ne?* ion yields. With increasing intensity,
three-photon processes are found to become more and
more important.

Ourreaction microscope wasinstalled atthe focus of beam
line BL 2 at FLASH. The light at 32 nm (=38.8 eV),
with a 5 Hz repetition rate at pulse energies =1-10 wulJ,
was focused into the interaction chamber reaching peak
intensities of 7=~ 102103 W/cm?. The free-electron-
laser (FEL) beam was crossed with a well-collimated
(2 mm diameter), dilute (=10° particles/cm?), and intrinsi-
cally cold (Tj, = 2 K) supersonic atomic gas jet. Ions
produced by the interaction with the FEL pulse were pro-
jected by means of a weak electric field (0.24 V/cm) onto
time- and position-sensitive microchannel plate detectors
(diameter 120 mm, position resolution 0.1 mm). From the
measured time of flight and position of each individ-
ual particle, the initial 3-dimensional momentum vectors
were reconstructed, and an ion-momentum resolution of
~(.8 a.u. for Ne™ was achieved (for details, see [7]).

The current induced on a metal plate by each individual
FLASH pulse was recorded in order to obtain pulse-to-
pulse information of the respective pulse energy. By com-
paring the average induced current over several thousand
pulses with the mean pulse energy given from the machine,
the absolute energy of each pulse could be deduced. On the
basis of this number, the approximately known focal spot
size (30 uwm diameter), and the pulse duration (30 fs), /
was calculated with an estimated uncertainty of a factor of
5. The linearity of our intensity scale was assured to be
correct within 10% with a relative calibration between runs
of better than 50% by comparing different yields for single
ionization (**Ne*, 2?Ne™, H,O", etc.) as a function of /.

The time-of-flight spectra of Ne?" for ¢ = 1 and 2, and
Ard* for g = 1-3, are shown in Fig. 1. The spectrum is
dominated by peaks of singly charged 2’Ne* and *’Ne*
ions with small (~2%) admixtures from the residual ion
H,O, (broad hump). In addition, small but significant
yields of 2°Ne?" ions were observed. Similarly to Ne,
MPI of Ar producing up to Ar** was found (Fig. 1 inset).

In analyzing the data, one has to first clarify whether
multiply charged Ne?" and Ar?" ions result from MPI or
single-photon absorption of high-harmonic radiation,
which was not actively suppressed in the present experi-
ment. On the basis of the well-known cross sections for

18 MAY 2007
103
2
5
2
§ 10
% R 8.0x10*
'>': l()l Ne +
=]
N
10°
5%104 6x10% 7x10% 8x10*
Time of Flight (ns)

FIG. 1. Time-of-flight mass spectra of Ne(! -2+ and Ar(l-3+
ions (in the inset) at =~ 10'2-10'> W /cm?.

single-photon single and double ionization of Ne by syn-
chrotron radiation [13,14], one can estimate the ionization-
rate ratio Py.+ / Pne+ to be =7.5 X 1073 for single-photon
absorption from the second and third harmonics. For this
estimate, the relative intensity ratios of the second and
third harmonics to the fundamental were taken from
Ref. [15] in the 10—40 nm range to be 2nd/1st = 0.35%
and 3rd/1st = 0.4%, respectively. This result is in contrast
to the measured ratios of 2.6 X 10™* to about 2 X 1073,
providing evidence that the observed multicharged ions
result mainly from few-photon ionization.

The first and second ionization potentials for Ne are 21.6
and 40.9 eV, respectively, and the first four ionization po-
tentials of Ar are 15.8, 27.7, 40.7, and 59.8 eV. Therefore, a
minimum energy of 62.5 eV is needed to doubly ionize Ne
atoms, which means that at least 2 photons have to be ab-
sorbed at the present photon energy of 38.8 eV. Certainly,
with much lower probability though, more than two pho-
tons can be absorbed. This would, according to perturba-
tion theory, most likely be SI. Here, within one laser pulse,
the Ne atom gets first singly ionized by absorption of one
photon, and then, in a further step, a second electron is
removed from the relaxed Ne® ground state, requiring
additional two photons. Note that whereas the lowest
Ne* excited state cannot be reached with one photon
from the neutral Ne ground state, the two-photon ioniza-
tion of Ne® can be enhanced via an intermediate reso-
nance. If in total three photons are involved, we cannot
distinguish between SI and NSI (this would require one to
measure electron energy spectra in addition), and, thus, we
just use the terminology three-photon double ionization
(3PDI). In any case, according to lowest-order perturbation
theory, expected to be valid at 7 < 10> W/cm? [16], the
ionization yield should increase with I as ¥ = o, - I",
where o, is the generalized n-photon cross section and n
is the number of photons needed for ionization.

The Ne?" yield is analyzed as a function of / in Fig. 2.
The blue and red curves, fitted to two sets of data, nicely
describe the experimental intensity dependences of
Ne?* ions with the slopes n =22+ 0.2 and n = 2.6 =
0.2, respectively. This indicates that double ionization of
Ne is induced mainly via a two-photon absorption at
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FIG. 2 (color). Ton yield of Ne?* and HJ (inset) as a function
of 1. Solid black and green points are the present data for two
different sizes of the light collimation exit slit. Solid blue and red
lines are fits by logY = nlogl + logo, to two sets of data
yielding n = 2.2 = 0.2 and n = 2.6 = 0.2. Single ionization of
H, residual gas leading to the slope n = 0.97 = 0.05 provides
further evidence for the linearity of our intensity scale.

1<6X10" W/cm?, clearly favoring the NSI mecha-
nism. The slope n = 2.6 found at higher intensities points
to mixed NSI and 3PDI transition contributions. As [
increases, the contribution of three-photon absorption is
expected to dominate [17]. The ionization-rate ratio
Pye+/Pne+ agrees well with the measurements taken at
the same photon energy by Sorokin et al. [18].

Similar conclusions can be drawn from the Ar** inten-
sity dependence shown in Fig. 3(b). The slopes deliver the
values n =2.0=*0.1 and n =3.5+0.2 for Ar’* and
Ar’**, respectively. According to the total ionization po-
tentials for double and triple ionization, Ar’** can be cre-
ated by three (NSI) or four (SI) photons, and two photons
are needed for Ar>" production. Analogous to the Ne data
at high intensities, n = 3.5 indicates that three- and four-
photon absorptions comparably contribute to the creation
of Ar**. Since the same number of photons is needed to
ionize Ar2™ for NSI as well as SI, the value n = 2.0 = 0.1
further confirms the reliability of the measured intensities
and ionization rates. Our finding may not completely agree
with recent results [10], where sequential ionization was
observed to be the dominant mechanism for MPI of Ar and
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FIG. 3 (color). Yield of Ar?™ ions as a function of I, (a) g = 2
and (b) ¢ = 3; for details, see the caption of Fig. 2.

Xe at comparable intensities but lower photon energies
(12.7 eV).

In addition to the total ionization yield, we were able to
record the first recoil-ion-momentum distribution for two-
photon double ionization of Ne in Fig. 4. Shown are the
ion-momentum components in the x-y plane for various
integration intervals along z as stated in the figure caption.
The light-propagation direction and its polarization are
along z and y, respectively. In Fig. 4(a), the recoil-ion-
momentum distribution of Ne* is observed to cluster on a
circle with the radius P, = (P2 + P?)!/2 = 1.05 a.u. as
expected for absorption of one single photon. Ions pro-
duced by two-photon or second-harmonic photon absorp-
tion are clearly absent, expected to occur at the large circle
at P, = 2.0 a.u. in Fig. 4(a). This result, obtained with a
statistical significance of about 10~ relative to one-photon
single ionization, agrees with the measured ion-yield de-
pendence in Fig. 2.

The Ne?' pattern, representing the vector sum-
momentum distribution of the two electrons, is shown in
Figs. 4(b) and 4(c) for I <3 X 10'> W/cm? and I > 2 X
103 W/cm?, respectively. For NSI, the electron excess
energy is = 15 eV, resulting in P, = 1.5 a.u. indicated
as circle 2 in Figs. 4(b) and 4(c). For absorption of three
photons, the maximum two-electron sum momentum
(emission into the same direction) can be 2.76 a.u., plotted
as circle 3. Denoting C; to represent the numbers of events
inside the circle i (i = 1, 2, 3), we might draw conclusions
about the contribution of various processes. Thus, the rate
(C3 — C,)/C5 of events in Fig. 4(b) point to a 29% con-
tribution of three-photon absorption and a C,/Cs = 71%
contribution of NSI inside circle 2. The observation of both
two- and three-photon absorption in the ion-momentum
spectra at [ <3 X 10'> W/cm? is in qualitative agree-
ment with the intensity dependence presented in Fig. 2.
The two-photon NSI is certainly the dominant transition
process while three-photon DI, most likely SI, is active
simultaneously.

For higher light intensities, i.e., at I > 2 X 103 W/cm?,
(C3 — C,)/C5 increases to a 35% contribution, whereas
C,/C; slightly decreases to 65%, a clear indication that the
SI contribution increases with 7, which supports the find-
ings in the intensity dependence above. Note that, due to
present momentum resolution (=0.8 a.u.) and overlapping
emission patterns for two- and three-photon processes, it is
impossible to absolutely separate these two transition
mechanisms by measuring recoil-ion momenta alone.
Thus, C3; — C, could also include some events of NSI
and vice versa.

Circle 1 in Figs. 4(b) and 4(c) with a radius of 1.05 a.u.
contains the events for two electrons ejected most likely
into opposite hemispheres assuming similar energies and
amounts to C;/C, = 66% of the NSI contribution in
Fig. 4(b). For two-photon double ionization, the angular
momentum constraints for the relative emission of the two
electrons are much more relaxed as compared to single-
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FIG. 4 (color). Density plot of recoil-ion-momentum distri-
butions for (a) Net and (b),(c) Ne**. The solid curves indicate
the momentum positions for one- and two-photon absorption
in (a) as well as for NSI and three-photon processes in (b) and (c)
for various emission mechanisms; see text. Net momenta are
integrated over events with |[P,| = 0.1 au. at low intensi-
ties corresponding to the green points in Fig. 2. Ne?* distribu-
tions integrate all events along the z direction at (b) 1<
3 X 102 W/cm? and (c) I > 2 X 10'3> W/cm?. The polarization
of the light is along the y axis.

photon double ionization. The observed pattern shows a
clear maximum at zero momentum corresponding to a
kinematics where both electrons are emitted with similar
energies into roughly opposite directions. For single-
photon double ionization, this configuration is suppressed

and even forbidden for equal energy sharing if the Ne?™ is
in the electronic ground state (even symmetry). Single-
photon double ionization of He, depicted in Fig. 1 of
Ref. [19], shows a pronounced double-hump structure in
the recoil-ion-momentum distribution, reflecting the dipole
emission characteristics as a result of the angular momen-
tum selection rules, in clear disagreement with the present
findings. Back-to-back emission for NSI supports theoreti-
cal predictions for He [20], where this geometry was found
to represent the main decay channel.

In summary, we studied few-photon multiple ionization
of Ne and Ar using FLASH photons in the VUV regime.
The light-intensity dependence for ion yields confirmed
double ionization of Ne to be mainly due to two-photon
nonsequential ionization at /<6 X 10'> W/cm?. As [
increases, three- or more-photon processes, most likely
SI transitions for Ne?* as well as Ar** production, become
more pronounced. Recoil-ion-momentum distributions of
Ne2" confirm these observations and, for the first time,
provide evidence for a sizable contribution of events,
where two ejected electrons widely share the excess energy
available and, thus, are emitted with similar energies, into
back-to-back directions. With the increase of the FLASH
pulse repetition rate achieved recently, fully differential
measurements are deeming at the horizon.
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