Carbon K-shell photoionization of fixed-in-space C₂H₄

T. Osipov,¹ M. Stener,^{2,3} A. Belkacem,¹ M. Schöffler,¹ Th. Weber,¹

L. Schmidt,⁴ A. Landers,⁵ M.H. Prior,¹ R. Dörner,⁴ and C.L. Cocke^{6, *}

¹Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, California 94720, USA

²Dipartimento di Scienze Chimiche, Università di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy

³Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM),

Unita' di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy

⁴Institut fur Kernphysik, University Frankfurt, Max von Laue Str 1,D-60438 Frankfurt Germany

⁵Department of Physics, Auburn University, Alabama 36849,USA

⁶Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA

(Dated: December 15, 2009)

Measurements of the photoelectron angular distributions in the body-fixed frame (MFPAD) have been carried out for 290–320 eV photons (just above the carbon K shell ionization threshold) on C₂H₄ using a COLTRIMS approach. The results are compared with a theoretical calculation and excellent agreement is found. A direct verification of the "*f*-wave shape resonance" is accomplished by obtaining the complex amplitude of the l = 3 partial wave, which shows a peak in its absolute value and a relative phase change of π as the energy is scanned across the resonance.

PACS numbers: 33.80.Eh, 33.90.+h

I. INTRODUCTION

When conventional photoionization experiments are performed in gas phase, they typically measure the cross section and the angular distribution of the emitted photoelectrons from a sample of molecules randomly oriented with respect to the laboratory frame. It is intrinsic for such an experiment that much information is lost due to the rotational average of all possible molecular orientations. For randomly aligned/oriented molecular targets it can be shown that (for each ionic state and for nonchiral molecules) only two parameters are sufficient to describe completely the photoelectron distribution, namely the cross section and the asymmetry parameter.

In recent years it has become possible to carry out measurements of the photoelectron (and other fragment(s)) angular distributions in the body-fixed frame of the molecule by using coincidence techniques (see [1] for the pioneering experiment). The basic idea is to reconstruct the molecular orientation with respect to the laboratory frame from the direction of the final ion fragments. The technique is based on the assumption that the molecular fragmentation time is much shorter than the rotational period of the molecule (axial recoil approximation, see [2– 4] for the discussion of its validity limits). Moreover, the photoionization must be followed by a fast fragmentation into ionic products. In the present case, we explore the photoionization of a core electron (K shell) in the molecule. When the core electron is ionized the core hole undergoes a fast decay by emission of a secondary Auger electron and the resulting dication promptly breaks up though Coulomb explosion.

The most efficient approach for these types of multiple

coincidence experiments today is the COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy [5, 6]) technique. The result of the COLTRIMS experiment consists of the complete description of the photoelectron angular distribution from a fixed-in-space (aligned) molecule, which can be characterized entirely by a series of parameters C_{LM} (see expression (4) below), where the integer L ranges from 0 up to (in principle) infinity, while the integer M is subject to the condition $-L \leq M \leq L$. Such parameters contain the maximum information which can be extracted by a photoionization experiment. This information provides important insights into the structure of the target molecule and its product ions, as well as into specific phenomena such as shape resonances which are directly affected by this structure.

II. EXPERIMENTAL SETUP AND DATA ACQUISITION

We examined ethylene (C_2H_4) photoionization for photon energies just (2-30 eV) above the K-shell ionization threshold. When a K electron is removed, this is followed by an Auger decay which in turn results in the Coulomb explosion of the molecular dication into two fragment ions. We detect the photoelectron and the two fragment ions in coincidence using a COLTRIMS (see [5–7]) setup. The experimental system is a parallel-plate time-of-flight (TOF) spectrometer consisting of three different electric field regions separated by high $(\sim 80\%)$ transmittance grids. RoentDek position sensitive delay line detectors (see [8, 9]) with 0.5ns time and 0.25mm position resolution (defined by the electronic modules used for the data collection) were placed at both ends of the spectrometer. One detector served to collect all positively charged recoil ions and the other to collect the photoelectrons. For each ion/electron, the full momentum vector was calculated from the flight time and position with

^{*}email address: cocke@phys.ksu.edu

FIG. 1. C_2H_4 PIPICO. The labeled hyperbola segment, extending from $tof_1 = tof_2 \simeq 3400$ ns, is the main subject of this work. The rest of the two-, three-body and even higher fragmentation breakup channels, contributing to the other bright data spots of the plot, are covered elsewhere (see [7]).

which that particle struck the detector. Data used for the analysis presented in this paper were collected over several run-time periods during which a slightly different geometry of the spectrometer acceleration regions was used. Typically the middle region would have a low field $(\sim 10 V/cm)$ and the other two would serve as a field free drift regions for the negative and positive sides of the spectrometer. This arrangement together with the position information allowed for a sub eV energy resolution in both photoelectron and positive ion detection. To make sure that the electron momentum along the time-of-flight direction had sufficient resolution the corresponding side of the spectrometer usually had the time-focusing fields arrangement (see [10]) and was longer than the positiverecoil side. To confine the photoelectron transverse flight spread not to exceed the spectrometer transverse size, a magnetic field of typically 10Gs was maintained in the direction collinear to the spectrometer axis (time-of-flight direction). This field was produced by the two large diameter coils placed outside the chamber in the Helmholtz geometry. The magnetic field made electrons spiral towards the detector while having a negligible effect on the trajectories of the heavy positive ion (see [11]). The proper combination of the electric field of the spectrometer, flight distance, and the magnetic field strength insures that the electron momentum reconstruction can be done properly for the whole 4π solid angle. The vertical supersonic gas jet was used to deliver the target molecules to the interaction region. The lateral size of the jet at the interaction region was less than 2mm and its density was near $10^{10} \div 10^{11}$ particles per cm³ (local equivalent pressure of $10^{-7} \div 10^{-6}$ Torr, the temperature of the expanding gas being around 100K) while the chamber vacuum was kept near 10^{-8} Torr. The x-ray photon beam propagation direction was horizontal and perpendicular to both the spectrometer axis and the gas jet direction.

The source of the photons was the Advanced Light Source at the Berkeley National Laboratory. The range of the photon energies used for the reaction was 290-320eV. Most of the experiments were conducted at beamlines 4.0.2 and 9.2.3 during the semiannual two-bunch periods essential for the time-of-flight measurements. During the operation at the beamline 4.0.2 the polarization of the light could be changed continuously from circular to linear oriented at any direction in the plane defined by the spectrometer axis and jet direction. At beamline 9.2.3 the polarization was fixed in the direction of the spectrometer axis and was not changeable. Detection of each photoelectron and two corresponding molecular ion recoils produced after the K-shell photoionization was done in coincidence. The data were collected in the event by event mode. This allowed us to perform the fully differential reaction cross section analysis.

III. DATA ANALYSIS

The analysis of the experimental data, obtained for the reactions involving the molecular breakup, is usually done by first looking at the Photo-Ion-Photo-Ion-Coincidence (PIPICO) spectrum, which consists of a 2D plot of the TOF of the second recoil versus the TOF of the first recoil. Such a plot (see fig. 1) immediately reveals numerous possible and accessible breakup channels of the system at hand. In the particular case of C_2H_4 the main channel of interest is the so-called symmetric channel $(C_2H_4 \rightarrow CH_2^+ + CH_2^+)$ – here the initial direction of the $\mathbf{C}-\mathbf{C}$ bond is preserved in the direction of the final recoil momenta. Besides the sharp hyperbola-like curve representing this symmetric channel, the deprotonation channel $(C_2H_4 \rightarrow C_2H_3^+ + p)$ and multiple threeand four-body breakup channels are readily identified. After setting the gate around the symmetric breakup in this manner a full 3d momentum vector reconstruction was performed for all of the detected particles for each event. The longitudinal component of the momentum (the component along the spectrometer axis direction) was calculated from the TOF of the particle, its mass, charge and the known values of the extraction field and the spectrometer dimensions. The components of the momentum in the plane of the detector for the recoils were simply obtained by multiplying the corresponding velocity by the mass of the fragment. The velocity is given by the ratio of the displacement from the center of the detector to the fragment's time of flight. The electron side transverse momentum calculation involves the use of a rotation matrix to reverse the effect of the spiraling due to the magnetic field. The exact detailed formulae for the above calculation are given elsewhere (see [7], for

FIG. 2. $CH_2^+ + CH_2^+$ breakup channel recoil momentum slices and KER spectrum.

example).

The momentum vector of the CH_2^+ recoils was used to determine the initial molecular frame (C-C bond direction). The observed sharp features in the measured photoelectron angular distributions, shown below, indicate that the axial recoil approximation works very well in this case. The absolute value of the recoil momentum vectors is trivially converted into the kinetic energy release (KER) of the molecular explosion (see fig. 2) In case of the hydrocarbons and ethylene, in particular, this spectrum reveals a single KER peak, unlike the rich structure which was seen earlier for the CO and N_2 [4] molecular breakups produced in a similar K-shell photoionization reactions. Apparently the symmetric breakup of the dication of ethylene populated in this way is produced through only a single intermediate channel with a well defined KER.

A similar analysis of the photoelectron energy shows the presence of satellite electrons in addition to the ones whose energy is consistent with the simple difference between the photon energy and the K-shell ionization potential. These satellite electrons are especially clearly seen on the 2D plot of the photoelectron energy vs the photon energy on fig. 3 Thus we avoid any satellite contamination of the resulting total photoionization cross section by gating on the main diagonal line in fig. 3. This contamination was discussed by Kempgens *at al* [12] in connection with attempts to identify/challenge the existence of f-wave resonance structure in the photoionization of hydrocarbons in this photon region. Except in fig. 5, all further plots in this paper represent main-line data only, excluding satellites.

Calculation of the momentum vectors for both recoils

FIG. 3. Electron energy as a function of the photon energy and the corresponding cross sections for the carbon 1s main line plus satellites (top) and only the main line (bottom).

and for the photoelectron on an event by event basis allows for the measurement of the angle between these vectors. Since the direction of the relative momentum of the two recoil ions denotes the molecular orientation, the direction of the photoelectron with respect to this orientation gives a unique angular distribution in the molecular body-fixed frame. Note that experimental data and its analysis presented above allow for determination of the C-C bond orientation only. The plain of the molecule is undefined (implicitly averaged over). Thus all references made here to the experimental photoelectron angular distributions in the molecular body-fixed frame assume this specific definition of it. Figure 4 is the example of the polar plot representation of this measured angular distribution data for the linearly polarized photon of 306eV for a $0^{\circ}-90^{\circ}$ range of angle between the C–C bond orientation and the polarization direction. Due to the symmetry of the molecule only half of each polar plot (quarter for 0° and 90° frames) represents the unique data, the rest is just appropriately rotated or reflected duplicate. The solid curve on top of the experimental error bars here is the best fit done with the following fitting formula:

$$f(\hat{k},\theta)|_{A_{l},B_{l}} \propto \left| \sum_{l=0,2} A_{l} Y_{l}^{0}(\hat{k}) \cos \theta + \sum_{l=0,2} \frac{B_{l}}{\sqrt{2}} \left(Y_{l}^{-1}(\hat{k}) - Y_{l}^{1}(\hat{k}) \right) \sin \theta \right|^{2} + \left| \sum_{l=1,3} A_{l} Y_{l}^{0}(\hat{k}) \cos \theta + \sum_{l=1,3} \frac{B_{l}}{\sqrt{2}} \left(Y_{l}^{-1}(\hat{k}) - Y_{l}^{1}(\hat{k}) \right) \sin \theta \right|^{2}$$
(1)

where θ is the angle between polarization direction and the molecular axis, \hat{k} is the direction of the photoelectron in the molecular frame, A_l and B_l are complex valued fitting parameters independent of θ and \hat{k} .

IV. THEORETICAL METHOD

We have calculated theoretical MFPADs for comparison with the experimental data. We have employed the Kohn-Sham (KS) B-spline LCAO formalism for the calculation of the continuum. The formalism is fully described in [13], so here we sketch only the essential points.

A ground state KS calculation of the electronic structure is first performed, employing the ADF program [14] with a Double Zeta Polarized (DZP) basis set of Slater Type Orbitals and the LB94 [15] exchange correlation potential. The LB94 is chosen because of its correct asymptotic Coulomb behavior, which has proven important for an accurate description of the photionization dynamics at the KS level. The electron density obtained with the ADF program is then employed to represent the KS Hamiltonian matrix employing the LCAO B-spline basis set. Occupied orbitals are obtained as bound eigenvectors: $H_{\rm KS}\varphi_i = \varepsilon_i\varphi_i$, $i = 1, \ldots, n$. Continuum photoelectron orbitals are extracted as eigenvectors with minimum modulus eigenvalue of the energy dependent matrix $\mathbf{A}^+\mathbf{A}$:

$$\mathbf{A}^{+}\mathbf{A}(E)c = ac, \quad \mathbf{A}(E) = \mathbf{H} - E\mathbf{S} \qquad (2)$$

In equation (2) \mathbf{H} and \mathbf{S} are the Hamiltonian and overlap matrices respectively, E is the photoelectron kinetic energy, c are the eigenvectors and a are the minimum modulus eigenvalues. The c, the eigenvectors of equation (2), correspond to the non-normalized photoelectron continuum orbitals, these are matched with regular and irregular Coulomb wavefunctions [16] in order to normalize them according to the \mathbf{K} matrix asymptotic conditions. Dipole matrix elements in the length gauge are then calculated between the initial core orbital and the final continuum, which are further transformed according to incoming waves **S**-matrix boundary conditions. Such dipole matrix elements are indicated as:

$$D_{lh}^{\lambda\mu-}(\lambda_r) = \langle \varphi_{lh}^{\lambda\mu-} | \Phi_{\lambda_r}^{EXT} | \varphi_a \rangle$$
(3)

where in (3) φ_a corresponds to the initial core orbital, $\Phi_{\lambda_r}^{EXT}$ to each of the three components of the electric dipole operator which transform like the standard spherical harmonics with l = 1 and $m = \lambda_r$, $\varphi_{lh}^{\lambda\mu^-}$ is the continuum normalized according to the incoming wave boundary conditions. The continuum orbital is labeled by λ (the irreducible representation), μ (the subspecies in case of degeneracy), l (asymptotic angular momentum), and h is used to identify different elements with the same $\{l, \lambda, \mu\}$.

Following the treatment of photoionization for fixed molecular orientation given by Chandra [17], the angular distribution of the photoelectrons into the solid angle $d\hat{k}$ along their direction of propagation \hat{k} from a molecule is expressed by

$$\frac{d^2\sigma}{d\Omega d\hat{k}} = (-1)^{m_r} \left(\frac{16\pi^3 \alpha \omega n_i}{3}\right) \sum_{LM=-L} \sum_{M=-L}^{L} C_{LM}(k,\Omega) Y_{LM}(\hat{k}) \quad (4)$$

where Ω represents the Euler angles which define the molecular fixed orientation with respect to the laboratory (photon) frame, α is the fine structure constant, n_i is the occupation number of the ionized orbital and m_r is 0, +1 or -1 for linear, left circular or right circular polarization, respectively. The laboratory frame is defined by the incident photons; the polar axis corresponds to the electric vector or propagation direction for linear or circular light polarization, respectively.

Finally, C_{LM} coefficients are obtained with the following expression [17, 18]:

$$C_{LM}(k,\Omega) = \sum_{L_r} (-i)^{l-l'} e^{i(\sigma_l - \sigma_{l'})} (-1)^{m+\lambda_r} \left(\frac{(2l+1)(2l'+1)(2L+1)}{4\pi} \right)^{1/2} \begin{pmatrix} l & l' & L \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l & l' & L \\ -m & m' & M \end{pmatrix} b_{lmh}^{\lambda\mu} b_{l'm'h'}^{\lambda'\mu'*} D_{lh}^{\lambda\mu-} (\lambda_r) D_{l'h'}^{\lambda'\mu'-} (\lambda'_r)^* \\ \times \sum_{L_r} (2L_r+1) \begin{pmatrix} 1 & 1 & L_r \\ -m_r & m_r & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & L_r \\ -\lambda_r & \lambda'_r & \lambda_r - \lambda'_r \end{pmatrix} R_{\lambda_r-\lambda'_r,0}^{L_r} (\Omega)$$
(5)

where $R_{\lambda_r-\lambda'_r,0}^{L_r}(\Omega)$ are the rotation matrices, σ_l are the Coulomb phase shifts, $b_{lmh}^{\lambda\mu}$ are the coefficients which adapt the spherical harmonics to the point group symmetry and the Wigner **3j** symbols are employed. The

theoretical polar plots reported in this work are therefore calculated by expanding expression (4), with the coefficients $C_{LM}(k, \Omega)$ obtained from (5). Finally we have also employed the complex dipoles of expression (3) as ini-

FIG. 4. Electron Angular Distribution at 306eV Photon Energy. The arrow shows the direction of the polarization. Molecular orientation is always along the x axis. All frames are plotted with the same scale by default.

tial guess to fit the experimental photoelectron angular distribution. More precisely, we split the complex dipole into its absolute value d and a short range phase shift τ :

$$D_{lh}^{\lambda\mu-}(\lambda_r) = d_{lh}^{\lambda_r} e^{i\tau_{lh}}$$
(6)

In the present calculations, the LCAO B-spline basis set has been built as follows: a large expansion has been set on the center of mass of the molecule, with functions up to angular momentum 10, with a radial grid extending up to 20 au with step size 0.2 au. Smaller off-center Bspline expansions (LCAO) have been set over the C and H nuclei within a sphere of radius 0.8 au with step size 0.2 au, the angular momentum up to 1 and 0 for C and H respectively.

V. ANALYSIS RESULTS AND COMPARISON WITH THEORY

The data collection during the experiment was done in two types of runs. The first type was a photon energy scan with a very fine step size ($\sim 0.1 \text{eV}$). The data, collected and properly normalized in this regime, were used to obtain the total reaction cross section. Figure 5 shows how it compares to previously measured results. In this work only the relative cross sections were measured, not absolute. The results, displayed on fig. 5, were scaled to match the peak of the distribution to the most resent measurements by Kempgens *et al.* in [12].

The second type consisted of a series of much longer runs 10 different photon-energy points across the predicted shape resonance position. The data collected here was used to produce the photoelectron angular distribution in a body fixed frame for each of those energy points.

The 4π collection solid angle for all the reaction products means that the data represent comprehensive coverage of the entire multi-dimensional space spanned by the momentum space of the photoelectrons for every vector alignment of the molecular axis and all KERs of the fragmentation. To convert the results into the form of a finite number of relevant plots which can properly describe the reaction, one has to slice the experimental data in several different directions. Each of these slices offers a specific view at the multi-dimensional reaction cross section.

A. Total Cross Sections

An important parameter obtained from the photoelectron angular distribution is the ratio of the sigma and pi cross sections. By definition σ ($\hat{\varepsilon}$ parallel to molecular axis) and π ($\hat{\varepsilon}$ perpendicular to molecular axis) cross sections are given by:

$$\frac{d\sigma}{d\Omega_{\varepsilon}}\Big|_{\theta_{\epsilon}=0^{\circ}} = \sigma \qquad \frac{d\sigma}{d\Omega_{\varepsilon}}\Big|_{\theta_{\epsilon}=90^{\circ}} = \pi \tag{7}$$

or in general case (as long as the initial state of the system is even or odd function of φ):

$$\frac{d\sigma}{d\Omega_{\varepsilon}} = \sigma \cos^2(\theta_{\varepsilon}) + \pi \sin^2(\theta_{\varepsilon}) \tag{8}$$

where θ_{ε} is the polarization direction relative to the molecular frame.

According to (7) first and the last frame of fig. 4 can be integrated over the electron direction and the ratio of totals can be taken as σ/π while canceling out the arbitrary scaling factor. For a better result we minimized the error bars due to the small solid angles by integrating all of the data that went into fig. 4 (not just the first and last frame) over the electron direction. The resulting plot was fitted by the function form (8) and a more accurate ratio of σ/π was obtained. The procedure was repeated for all 10 different photon energies.

The integration of (8) over all polarization directions in turn readily yields the formula for the total cross section in terms of σ and π : total cross section $\propto \sigma + 2\pi$. Thus the absolute cross section as a function of energy together with σ/π information can be used to get absolute values for the σ and π contributions:

$$\begin{cases} f(h\nu) = \sigma + 2\pi \\ g(h\nu) = \sigma/\pi \end{cases} \Rightarrow \begin{cases} \sigma = \frac{f(h\nu)g(h\nu)}{2+g(h\nu)} \\ \pi = \frac{f(h\nu)}{2+g(h\nu)} \end{cases}$$

The plot of the results is shown in figure 6. The theoretical calculations are shown as the solid curves in this figure and are in excellent agreement with the experimental results (scaled to fit). The σ cross section broad structure peeking around 300eV strongly supports the presence of the shape resonance.

B. Differential Cross Sections

More impressive agreement of theory and experiment is observed when we compare the calculated and measured photoelectron angular distributions, examples of which are shown in figures 7, 8 and 9 for three different photon energies. Here the red solid curves represent the theoretical calculations rather than the spherical harmonics fit. Only a single scaling factor derived from the total cross section values was used throughout all of the snapshots to compare the calculated curves to the experimental ones. It seems that the theoretical model works particularly well for the higher photon energies.

It is worth noting some specific aspects of the differential cross section plots, staring with the results at 293eV (fig. 7): at 0 degrees (parallel polarization) the photoelectrons are preferably emitted along the $\mathbf{C}-\mathbf{C}$ bond direction, with only minor emission in the perpendicular direction, which is, in any case, predicted by the theory and confirmed by the experiment. At 90 degrees (perpendicular polarization) the photoelectrons are preferentially emitted along the diagonal directions, a typical behavior already observed in biatomic molecules [18]. Notice that

FIG. 5. Measured total cross section versus the photon energy. Results from this work compared to the results from [12, 19, 20]

the theory is able to capture all the relevant features of the angular distributions at every polarization angle between the two limiting cases just considered.

The next energy 302eV (fig. 8) is interesting because it is the closest to the shape resonance: at parallel polarization the emission along the C–C bond direction is accompanied by four weak but angularly very well resolved lobes pointing at about 60, 120, 240 and 300 degrees. They are also present in both experiment and calculation, and are the most evident and clear manifestation of the f wave nature (l = 3) of the shape resonance. The perpendicular polarization angular distribution essentially keeps the shape of the previous energy, and this is not surprising because the "f-shape" resonance is supported by the σ continuum channel, not active for perpendicular polarization. The results at intermediate polarization angles show as well interesting differences with respect to the previous energy. Consider, for example, the angular distribution at 20 degrees: while the lobes along the **C–C** bond directions are similar, the relative intensity of the weaker diagonal lobes show an inverted intensity distribution. This inversion of the small lobes is a direct

consequence of the shape resonance. Across a resonance the phase of the continuum wave function changes by π . Since the shape resonance is only in the sigma and not in the pi channel, the relative phase between the σ and π contributions changes. The strongest effect can be observed when the polarization direction is at around 45° angle with respect to the molecule. The resulting cross section, being the superposition of the comparable σ and π contributions $(sin(45^\circ) = cos(45^\circ) = 1/\sqrt{2}),$ strongly depends on the relative phase between the two. Consequently the linear dichroism, denoted by the $cos(\delta)$ term (see equation (2) in [21]), is exhibited. As the relative phase δ changes across the shape resonance the direction of the constructive interference in the photoelectron angular distribution flips from about -60° (fig. 7, bottomleft frame) to 60° (fig. 8, bottom-left frame).

Finally let us consider the highest energy results at 318eV (fig. 9): in this case we are again off resonance. The parallel polarization results show again very weak emission away from the C–C bond. On the other hand the perpendicular polarization results show a much more structured pattern. This may be ascribed to a molecular

FIG. 6. σ and π contributions to the total cross section. Theoretical results shown with the smooth solid curves; error bars represent the experiment.

geometry effect: parallel polarization generates photoelectrons with σ symmetry which may feel strongly the **C–C** chemical bond, whereas perpendicular ionization generates photoelectrons with π symmetry which feel the **C–C** chemical bond to a lesser extent since they have a nodal line over it. However, as the energy increases, the photoelectron can penetrate better inside the molecule and starts to feel the **C–C** chemical bond only at higher energy, showing more structure in an angular distribution pattern.

To further compare the results an attempt was made to extract the set of dipole matrix transition elements (absolute values and relative phases), defined earlier in (6).

First recall the functional form (1) which was used to fit the experimental photoelectron angular distributions as in figure 4. This fitting form was produced from a more general expression of the differential cross section that particularly emphasizes its angular dependencies:

$$\begin{aligned} \frac{d^{2}\sigma}{d\mathbf{k}d\Omega} &\propto \left| \sum_{l_{odd}} A_{l}(k)Y_{l}^{0}(\hat{\mathbf{k}})Y_{1}^{0}(\hat{\varepsilon}) + \sum_{l_{odd}} B_{l}(k)Y_{l}^{\pm 1}(\hat{\mathbf{k}})Y_{1}^{\mp 1}(\hat{\varepsilon}) \right|^{2} \\ &+ \left| \sum_{l_{even}} A_{l}(k)Y_{l}^{0}(\hat{\mathbf{k}})Y_{1}^{0}(\hat{\varepsilon}) + \sum_{l_{even}} B_{l}(k)Y_{l}^{\pm 1}(\hat{\mathbf{k}})Y_{1}^{\mp 1}(\hat{\varepsilon}) \right|^{2} \end{aligned}$$

where the two squared terms are due to the symmetry of the molecule and correspond to the gerade and ungerade initial states, which can not be experimentally resolved and thus both contribute incoherently to the final cross section (alternatively see [22–24] for a discussion of the possible coherence of the g and u contributions). The summations were truncated at l = 3. When the electric dipole operator acts on the states with cylindrical symmetry (m = 0) the only $Y_l^m(\hat{\mathbf{k}})$ that contribute to the final state are those with $m = 0, \pm 1$ – mimicking the m number of the photon. This is reflected in the above formula as well. In this case the A_l and B_l can be expressed through simplified set of complex dipoles, defined by (6), as:

$$A_l \propto (-i)^l d_{l0} e^{(i\tau_{l0})} / \sqrt{p} \qquad B_l \propto (-i)^l d_{l1} e^{(i\tau_{l1})} / \sqrt{p}$$

Strictly speaking, however, the above fitting functional form $(m = 0, \pm 1)$ works only for linear molecules like O₂, N₂ (see [25])or even C₂H₂. Another linear but not symmetric molecule that was a subject of a similar treatment in [26] is CO. On the other hand C₂H₄ is a planar molecule, not linear, which was taken fully into account by the theoretical model. In fact, in the calculations of the TDDFT theoretical profiles all m contributions have been considered, up to $m = \pm 10$. To better match the theoretical treatment a more involved fitting procedure was performed with the extended functional form given by:

$$\left| \sum_{l_{odd}} \sum_{m=-l}^{l} \sum_{m'=0,\pm 1}^{(-i)^{l}} \frac{d_{lm}^{m'}(k) \exp\left(i\tau_{lm}^{m'}(k)\right)}{\sqrt{p}} Y_{l}^{m}(\hat{\mathbf{k}}) Y_{1}^{m'}(\hat{\varepsilon}) \right|^{2} + \left| \sum_{l_{even}} \sum_{m=-l}^{l} \sum_{m'=0,\pm 1}^{(-i)^{l}} \frac{(-i)^{l} d_{lm}^{m'}(k) \exp\left(i\tau_{lm}^{m'}(k)\right)}{\sqrt{p}} Y_{l}^{m}(\hat{\mathbf{k}}) Y_{1}^{m'}(\hat{\varepsilon}) \right|^{2}$$
(9)

All m values here are due to the fact that initial state has no cylindrical symmetry and thus also has all possible mvalues (not just m = 0).

Unfortunately, if form (9) is used to fit the experimental angular distributions with $d_{lm}^{m'}$ and $\tau_{lm}^{m'}$ as parameters, the procedure does not produce a unique set of best values for these parameters. The main reason is that the square of both odd and even functions is even, thus making the two terms in (9) not completely orthogonal or linearly independent. For this reason the fitting was performed by assigning the $d_{lm}^{m'}$ and $\tau_{lm}^{m'}$ initial values to those produced by the theoretical calculations and letting them vary to get to the closest local minimum of χ^2 . The photoelectron angular distributions, resulting from this fitting procedure, are shown as a green curve on top of the experimental results and theoretical angular distributions for three different photon energies in figures 7, 8 and 9. The values for the fitting parameters of the most contributing harmonics (these are harmonics that would contribute in case of the linear molecule, *i.e.* m = m' = 0and $m = -m' = \pm 1$) are plotted for all ten photon energies in figures 10, 11, 12, and 13. Since experiment can not provide the absolute phase information, to obtain a better representation of actual phases and, more important, phase changes the fitted results were obtained for the relative phases with respect to the first term of each (gerade and ungerade) contribution and then the theoretically calculated phase of those terms were added to

FIG. 7. Electron Angular Distribution at 293eV Photon Energy. The arrow shows the direction of the polarization. Molecular orientation is always along the x axis. Red curves are theoretical angular distributions. Green curves are the best fit results.

FIG. 8. Electron Angular Distribution at 302eV Photon Energy. The arrow shows the direction of the polarization. Molecular orientation is always along the x axis. Red curves are theoretical angular distributions. Green curves are the best fit results.

FIG. 9. Electron Angular Distribution at 318eV Photon Energy. The arrow shows the direction of the polarization. Molecular orientation is always along the x axis. Red curves are theoretical angular distributions. Green curves are the best fit results.

FIG. 10. Odd l contribution amplitudes. Smooth solid curves are theoretical calculations for the respective parameters.

FIG. 11. Odd l contribution phases. Smooth solid curves are theoretical calculations for the respective parameters.

the experimental relative phases before plotting them:

even
$$l \Rightarrow \tau_{lm} = (\tau_{lm} - \tau_{00})_{exp.} + \tau_{00} th.$$

odd $l \Rightarrow \tau_{lm} = (\tau_{lm} - \tau_{10})_{exp.} + \tau_{10} th.$
(10)

Good qualitative agreement between theory and experiment is clear. One particular feature that deserves special attention is the character of the sigma contribution of the l = 3 partial wave. The amplitude clearly exhibits a peak at around 300eV (green in fig. 10) and its relative phase undergoes a change close to π in value(green in fig. 11),which is consistent with the flipping of the minor lobes in the photoelectron angular distributions across the shape resonance, discussed above. This is the most comprehensive confirmation of the presence of the f-wave shape resonance which was debated by several experimental and theoretical studies [12, 19, 20, 27, 28].

FIG. 12. Even l contribution amplitudes. Smooth solid curves are theoretical calculations for the respective parameters.

FIG. 13. Even l contribution phases. Smooth solid curves are theoretical calculations for the respective parameters.

Slight quantitative disagreement of the results can be attributed to several factors besides the obvious deficiency of the fitting function form and the fitting software: the expansion in (9) was limited to $l \leq 7$ in the theoretical calculations, while in the fitting procedure only $l = 0, \ldots, 3; m = 0, \pm 1$ coefficients were varied, while the rest of the contributions were kept constant at the values given by the theory; finite acceptance angles used in experiment were not taken into account when fitting the angular distributions; as mentioned above, experimental photoelectron angular distributions were obtained with respect to the \mathbf{C} - \mathbf{C} bond but random orientation of the molecular plane, while theory predicts only minor qualitative difference for different orientations, the complete angular distributions were obtained strictly in the plane of the molecule; overall statistics and error bars of the experimental results could be improved thus producing a more clear minimum in the χ^2 .

VI. CONCLUSIONS

Using the COLTRIMS technique we performed a kinematically complete experiment measuring photoionization of the carbon K-edge of the fixed in space C_2H_4 . Coincidence measurements of reaction products along with data collection and analysis on the event-by-event basis allowed us to obtain the multi differential angular distribution of photoelectrons (ADPs) in the body-fixed frame of ethylene molecule. We also completed very comprehensive theoretical study of the reaction. A set of dipole transition matrix elements was calculated and extracted (7 amplitudes and 5 relative phases) from the experimental results. These matrix elements along with the complete ADPs showed a very good qualitative agreement between the experiment and the theoretical model used. The behavior of the l = 3, m = 0 partial wave contribution, obtained from both calculations and experiment, indisputably confirms the presence of the ethylene f-wave

- E. Shigemasa, J. Adachi, M. Oura, and A. Yagishita, Phys. Rev. Lett. **74**, 359 (1995).
- [2] R. N. Zare, Mol. Photochem. 4, 1 (1972).
- [3] T. Osipov, C. L. Cocke, M. H. Prior, A. Landers, O. J. Th.Weber, L. Schmidt, H. Schmidt-Böcking, and R. Dörner, Phys. Rev. Lett. **90**, 233002 (2003).
- [4] T. Weber, O. Jagutzki, M. Hattass, A. Staudte, A. Nauert, L. Schmidt, M. H. Prior, A. L. Landers, A. Bräuning-Demian, H. Bräuning, C. L. Cocke, T. Osipov, I. Ali, R. D. M. no, D. Rolles, F. J. G. de Abajo, C. S. Fadley, M. A. V. Hove, A. Cassimi, H. Schmidt-Böcking, and R. Dörner, J. Phys. B **34**, 3669 (2001).
- [5] J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L. P. H. Schmidt, and H. Schmidt-Böcking, Rep. Prog. Phys. 66, 1463 (2003).
- [6] R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and H. Schmidt-Böcking, Physics Reports 330, 95 (2000).
- [7] T. Osipov, Phd thesis, Kansas State University, Manhattan, KS (2003).
- [8] O. Jagutzki, V. Mergel, K. Ullmann-Pfleger, L. Spielberger, U. Spillmann, R. Dörner, and H. Schmidt-Böcking, Nucl. Instrum. Meth. Phys. Res. A477, 244 (2002).
- [9] RoentDek (web site).
- [10] W. Wiley and I. McLaren, Rev. Sci. Instr. 26, 1150 (1955).
- [11] R. Moshammer, M. Unverzagt, W. Schmitt, J. Ullrich, and H. Schmidt-Böcking.
- [12] B. Kempgens, H. M. Köppe, A. Kivimäki, M. Neeb, K. Maier, U. Hergenhahn, and A. M. Bradshaw, Phys. Rev. Lett. **79(1)**, 35 (1997).
- [13] D. Toffoli, M. Stener, G. Fronzoni, and P. Decleva, Chem. Phys. 276, 25 (2002).

shape resonance found around 10eV above the carbon K-edge.

In general such a validation of the theoretical approach, presented in this paper, assures its successful utilization in studying and describing the parameters and features of ethylene molecule, its geometrical structure, chemical activities and physical properties, as well as predicting and even controlling chemical and atomic reactions other then just carbon K-edge photoionization, studied in this work.

VII. ACKNOWLEDGMENTS

The calculations have been supported by grants from MIUR (Programmi di Ricerca di Interesse Nazionale PRIN 2006) of Italy, from Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (IN-STM) and from CINECA (Bologna - Italy). Experimental work has been supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division. Support from the DAAD and DFG is acknowledged.

- [14] E. J. Baerends, D. E. Ellis, and P. Ros, Chem. Phys. 2, 41 (1973).
- [15] R. V. Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2412 (1994).
- [16] A. R. Barnett, Comput. Phys. Commun. 27, 147 (1982).
- [17] N. Chandra, J. Phys. B: At. Mol. Opt. Phys. 20, 3405 (1987).
- [18] M. Stener, Chem. Phys. Lett. 356, 153 (2002).
- [19] M. N. Piancastelli, T. A. Ferrett, D. W. Lindle, L. J. Medhurst, P. A. Heimann, S. H. Liu, and D. A. Shirley, J. Chem. Phys. 94, 3004 (1989).
- [20] A. L. D. Kilcoyne, M. Schmidbauer, A. Koch, K. J. Randall, and J. Feldhaus, J. Chem. Phys. **98(9)**, 6735 (1993).
- [21] T. Jahnke, T. Weber, A. L. Landers, A. Knapp, S. Schössler, J. Nickles, S. Kammer, O. Jagutzki, L. Schmidt, A. Czasch, T. Osipov, E. Arenholz, A. Young, R. D. M. no, D. Rolles, F. J. G. de Abajo, C. S. Fadley, M. A. V. Hove, S. K. Semenov, N. A. Cherepkov, J. Rösch, M. H. Prior, H. Schmidt-Böcking, C. L. Cocke, and R. Doörner, Phys. Rev. Lett. 88, 073002 (2002).
- [22] M. S. Schoeffler, J. Titze, N. Petridis, T. Jahnke, K. Cole, L. P. H. Schmidt, A. Czasch, D. Akoury, O. Jagutzki, J. B. Williams, N. A. Cherepkov, S. K. Semenov, C. W. McCurdy, T. N. Rescigno, C. L. Cocke, T. Osipov, S. Lee, M. H. Prior, A. Belkacem, A. L. Landers, H. Schmidt-Böcking, T. Weber, and R. Dörner, Science **320**, 920 (2008).
- [23] N. A. Cherepkov, S. K. Semenov, M. S. Schffler, J. Titze, N. Petridis, T. Jahnke, K. Cole, L. P. H. Schmidt, A. Czasch, D. Akoury, O. Jagutzki, J. B. Williams, C. L. Cocke, T. Osipov, S. Lee, M. H. Prior, A. Belkacem, A. L. Landers, H. Schmidt-Bcking, T. Weber, and R. Drner, Phys. Rev. A 80, 051404 (2009).

- [24] N. A. Cherepkov, S. K. Semenov, and R. Dörner, Journal of Physics: Conference Series 141, 012001 (2008).
- [25] S. Motoki, J. Adachi, K. Ito, K. Ishii, K. Soejima, A. Yagishita, S. K. Semenov, and N. A. Cherepkov, J. Phys. B: At. Mol. Opt. Phys. 35, 3801 (2002).
- [26] N. A. Cherepkov, G. Raseev, J. Adachi, Y. Hikosaka, K. I. S. Motoki, M. Sano, K. Soejima, and A. Yagishita, J. Phys. B: At. Mol. Opt. Phys. **33**, 4213 (2000).
- [27] N. Haack, G. Ceballos, H. Wende, K. Baberschke, D. Arvanitis, A. L. Ankudinov, and J. J. Rehr, Phys. Rev. Lett. 84, 614 (2000).
- [28] J. Berkowitz, Photoabsorption, Photoionisation and Photoelectron Spectroscopy (New York: Academic)(1979).