

HOW LONG WILL 100ml (OF WATER) LAST ?

We assume the following:

Volume = 100ml Pressure = 100psi Nozzle = 30microns Turbo pumping speed = maximum ~1400 l/s for N₂ – we guess ~1000 l/s for water (Note: only below ~7.5E-4 Torr most turbo pumps operate at their maximum pump capacity)

Assume that the gas expands into 4E-4 Torr (0.0532Pa) pressure and that this pressure is stable. This implies that the pump removes at most 1000 l/s of 4E-4 Torr pressure (water) gas. In this pressure regime the amount of gas produced by a substance is given by: PV=nRT. R = 8.3144621 J/(K*mol), T = 373 K, n = 100*p/(molar mass) (for water this is 100g/(18 g/mol) = 5.5 mol), P = 0.0532 Pa. With these values we get V = 320,623 m^3 = 3.21E8 l.

```
Divide V by the pump speed to get 321,000 s.
Divide by 3600 s to get hours:
Duration minimum = 89.16 hrs (Water).
Divide by 24 hrs to get days:
Duration minimum = 3.7 days (Water).
```

To get the pump time for your liquid, find the number of moles m in the liquid reservoir and multiply this number by m/5.5.

PUMP DOWN OF THE DRY LIQUID-TO-GAS MANIFOLD: Start-up Phase

Preparation !!!

In case you need to evacuate the >>tank<< make sure you have the valve V_{evac-tank} open during the pump down of the chamber. If you forgot to evacuate during the pump down phase you need to make sure that the "hidden bypass" and the bypass between the chamber and the 2nd stage is closed; open V_{evac-tank} very slowly.

Get the Liquid-to-Gas Manifold ready

- 1. Close V_{drain}
- 2. Close C_{aux}
- 3. Close and lock V_{transfer}
- 4. Close and lock V_{gas-manifold}
- 5. Close C_{reservior-drain} or V_{seed} and V_{supply} in case you use the optional liquid and gas supply arm
- 6. Close C_{aux}
- 7. Close V_{bypass}
- 8. Close V_{protect}
- 9. Open V_{blocking}
- 10. Open V_{evac-line}

Start "chem-lab" diaphragm pump in controller rack

- 11. Open V_{three-way} to pump
- 12. Pump for 1 minute
- 13. Open V_{nozzle}
- 14. Pump for 1 minute and check Pressure Gauge (should go down)
- 15. Close V_{three-way}

Make sure the chamber fore-vacuum is running (especially scroll at 2nd stage)

- 16. Open V_{bypass} slowly only when the manifold and the reservoirs are dry !
- 17. Open V_{protect}
- 18. Let it pump for 10 minutes

START/STOP HEATING

INSIDE THE CHAMBER

Use heat controller on Controller Rack

Heat the gas line first

set desired temperature to 120deg C: DO NOT GO HIGHER IN TEMPERATURE !!!

- turn on controller unit (switch in the back)
- select thermocouple and temperature units (1.: press "↓" for 3 sec., press "↓" till you get "Inpt", press "▲" or "▼" till you get "J", only if "J" is flashing hit "↓". 2.: Press "¬↓" till you get "tpun", press "▲" or "▼" till you get "C", only if "C" is flashing hit "↓".)
- enable PID mode (press "-→" till you get "ctrl", press "▲" or "▼" till you get "PID"; only if "PID" is flashing hit "→")
- set desired temperature (press "↓", press "▲" or "▼" and then confirm with "↓")
- turn on the heater controller (flick the switch labeled "heater controller on" up; check if fans are running)
- start PID controller (press "-→" till you get "r-S", press "▲" or "▼" till you get "run", only if "run" is flashing hit "→")
- set digital trimmer to restrict max. current (set dip switch to "10" to "15", i.e. 10 to 15% of 5A; the lower the better! Recommended: "10" for nozzle and "13" for gasline)

Heat the nozzle next

set desired temperature to 125deg C: DO NOT GO HIGHER IN TEMPERATURE !!! => see instructions above

To stop heating:

- stop PID controller (press "-+-" till you get "r-S", press "▲" or "▼" till you get "stop", if flashing hit "+-")
- set digital trimmer to restrict min. current (set dip switch to "00")

See page 8 for the heating outside the chamber

MAKE A LIQUID-TO-GAS JET

Prepare the Chamber

- 1. Close all chamber bypasses
- Set Vacuum Gauge controller to appropriate ranges (Jet Dump: 1E-7, Chamber: 1E-7, 2nd Stage: 1E-6, Source: 1E-4)

Prepare the Liquid-to-Gas Manifold

- 3. Reservoir Heater should be cold (set it to 20deg C); remove sleeve & cool it down with a "water bucket" if needed;. Note: you cannot and should not transfer liquid into the hot reservoir (safety issue !).
- 4. Close V_{nozzle}
- 5. Close V_{protect}
- 6. Close V_{blocking}
- 7. Close V_{three-way}
- 8. Close and lock V_{evac}
- 9. Close V_{seed}
- 10. Close V_{supply}

Option A to fill the Reservoir: Prepare the Transfer Arm of the Manifold

- 11. Close V_{transfer}
- 12. Close C_{aux}
- 13. Close C_{supply-drain}
- 14. Open V_{drain}
- **15.** Wear your Personal Protective Equipment (Gloves, Glasses etc.): Fill liquid into small metal funnel slowly to avoid bubbles which can clog the filling mechanism; stop when liquid reaches desired level in glass indicator funnel.
- 16. Close V_{drain}

Transfer the Liquid

- 17. Open V_{transfer} slowly and watch the level in the glass indicator funnel drop to desired level
- 18. Close and lock V_{transfer}

See next page for Option B to fill the Reservoir =>

Option B to fill the Reservoir: Prepare and use the Syringe

- 11. Close and lock V_{transfer}
- 12. Wear your Personal Protective Equipment (Gloves, Glasses etc.): Attach the needle to the syringe and suck the (toxic or hazardous) liquid (150ml max) from a beaker in a fume hood.
- 13. Close V_{svringe} and detach the needle
- 14. Connect Syringe assembly to V_{supply} (pink nut)

Pump out the connector between V_{supply} and $V_{syringe}$

- 15. Open V_{blocking}
- 16. Open V_{evac-line}
- 17. Open $V_{three-way}$ to the diaphragm forepump
- 18. Pump down for 10 seconds and check Pressure Gauge (should go down)
- 19. Close V_{three-way}
- 20. Close V_{evac-line}
- 21. Close V_{blocking}

Transfer the Liquid

- 17. Open V_{svringe} and slowly press the plunger of the syringe down to the desired milliliter value
- 18. Close V_{syringe}
- **19.** Close V_{supply}
- 20. The syringe may be disconnected at V_{supply} (pink nut); if so cap V_{supply}

See next page for instruction how to start the jet =>

continue: MAKE A LIQUID-TO-GAS JET

Make a (cold) jet

- 1. Open V_{blocking}
- 2. Open V_{nozzle} slowly (2 to 3 seconds)

Flush out the gasline when needed (when seeding a buffer gas may be used instead: see Seeded Jet section):

- 3. Close V_{blocking}
- 4. Open V_{evac-line}
- 5. Open V_{three-way} to exhaust for 3 seconds
- 6. Open V_{three-way} to the forepump and pump for 3 seconds (not longer to avoid water pollution of the pump !)
- 7. Close V_{three-way}
- 8. Close V_{evac-line}
- 9. Open V_{blocking}
- 10. Start outside Heaters (set to desired temperatures; for the reservoir it is 170deg C max. It is recommended to go up in steps like 50, 80, 100, 120, 150, 170deg C): see next page for instructions
- 11. Watch the vacuum gauges at the controller rack

START/STOP HEATING - continue

OUTSIDE THE CHAMBER

Use heat controllers next to Gas Manifold

Heat the gas line first

set desired temperature to max 125deg C: DO NOT GO HIGHER IN TEMPERATURE !!!

- first press the "reset" button on the yellow GFCI plug to supply 110VAC
- turn on the unit (red button)
- watch out: Unit may immediately starts running if somebody didn't dial it down before act fast to stop it
- (unit is preset to deg C units and J thermocouples)
- select your heating temperature (1.: press "□", 2.: change red value with "▲" or "▼", 3: confirm with "↓", 4: leave menu with pressing "□" twice)

Heat the reservoir next

Keep it cold for the transfer of the liquid; you cannot and should not transfer liquid into the hot reservoir

(safety issue !). Set to desired temperature after transfer (165deg C max). It is recommended to go up in steps like 50, 80, 100, 120, 150, 165 deg C...

=> see instructions above

To stop heating:

- put temperature to "20" temperature (1.: press "□", 2.: change red value with "▲" or "▼", 3: confirm with "↓", 4: leave menu with pressing "□" twice)
- verify that the heating stops and the temperature goes down
- turn off the unit (red button)
- press the "test" button on GFCI plug to cut the AC power

STOP AND START JET IN VACUUM CHAMBER

Stop the Jet

- 1. Close V_{blocking}
- 2. Open V_{evac-line}
- 3. Open V_{three-way} to exhaust slowly (should take 3 seconds)
- 4. Open V_{three-way} to diaphragm pump and pump for 10 seconds (not longer since condensables are bad for the diaphragm pump), then close V_{three-way} again
- 5. Do NEVER pump wet reservoir or gas lines via the bypass to the second stage (it will pollute and damage the scroll forepump).

Restart the Jet

- 1. Close V_{three-ways}
- 2. Close V_{evac-line}
- 3. Open V_{blocking}

SEED JET WITH NOBLE GAS: USE OF THE OPTIONAL GAS SUPPLY SYSTEM

Prepare the Gas Supply System

- 1. The reservoir should be empty and dry and cold
- 2. Connect the diaphragm pump to gas supply system
- 3. Close V_{blocking} and V_{transfer}
- 4. Open C_{drain} and connect gas supply system to reservoir
- 5. Connect the gas supply system to the regulator of the gas bottle
- 6. Close V_{exhaust}
- 7. Open V_{seed}, any valves in front of the gas regulator, and the regulator itself to pump to the main valve of the bottle (which should be closed)
- 8. Open V_{pump} and pump for 5 minutes

Make a seeded Jet

- 9. Close V_{seed}, V_{pump}, and the regulator (keep any valve in front of the regulator open)
- 10. see MAKE A LIQUID-TO-GAS JET
- 11. Note: It is recommended to start with a low reservoir temperature after the liquid transfer like 50deg C and observe the vacuum gauges
- 12. To avoid the liquid being pushed through the nozzle apply He buffer gas with a pressure that is higher than the seed gas via $C_{dry-out}$: Open $V_{dry-out}$ to dial in the pressure while $V_{evac-line}$ and V_{nozzle} are open after this section has been pumped out; note the ion gauges need to be preset for this jet. Now open $V_{blocking}$ and close $V_{evac-line}$.
- Open the gas bottle and dial in a pressure of ~30 to 50 psi. Then open V_{seed} and watch the gauges. Wait for the He to get out (~10 to 15 minutes)
- 14. Increase temperature of the liquid and pressure of the gas in an alternating way (20 to 40deg C & 20 psi steps)
- 15. For a water jet of 170deg C at the reservoir the Ar pressure is supposedly ~120 psi
- 16. Feel the Knee with your finger (caution: warm to hot): You likely will feel a temperature gradient which can be moved to the left and right with increasing the temperature of the reservoir and increasing the gas pressure

Stop the seeded Jet

- 17. Close V_{seed} and the gas bottle
- 18. See STOP AND START JET IN CHAMBER or STOP ENTIRE LIQUID-TO-GAS JET OPERATION OR MAKE A REFILL
- 19. Open C_{exhaust}
- 20. Open V_{exhaust} slowly to drain the gas (should take 2 to 3 seconds)
- 21. Close V_{exhaust}
- 22. Open V_{pump} and pump for 1 minute
- 23. Close the gas regulator and $V_{\mbox{pump}}$

STOP ENTIRE LIQUID-TO-GAS JET OPERATION OR MAKE A REFILL

Stop Jet in Chamber

- Close V_{seed} 1.
- 2. Close V_{blocking}
- 3. Open V_{evac-line}
- Open V_{three-way} to exhaust slowly (should take 5 seconds) 4.
- Open $V_{three-way}$ to pump and pump for 15 seconds, then close $V_{three-way}$ again 5.
- 6. Close V_{nozzle}

Re-transfer Liquid back to Supply Reservoir (for non hazardous liquids only !)

- Close V_{blocking} 7.
- 8. Close V_{drain}
- While the Reservoir and the gas line is hot slowly open V_{transfer} and monitor the liquid level in the glass funnel. Close 9. $V_{\mbox{transfer}}$ when the level stopped rising and no more bubbles make it to the surface.

If your Chemical is hazardous or toxic:

- 10. Do not re-transfer the liquid but open $V_{evac-line}$ and open $V_{three-way}$ to exhaust
- 11. Monitor with the ion-gauges and the COLTRIMS spectrometer if the jet is fading. You can close V_{three-way} and check if the source chamber is falling or rising after a while; if it is still rising there is still liquid – if it is stable or falling you can now pump on it.
- 12. You may want to heat up the reservoir if it safe to accelerate the process. With 100 deg C it can take 2h for ~100ml.
- 13. Alternatively use Syringe to suck out the reservoir: Open V_{supply}, open V_{syringe} and pull the plunger as far out as possible. Close V_{supply}, close V_{syringe}. Detach syringe (pink nut) and bring it to a fumehood to drain it. Cap V_{supply}.

Drain (and refill) the Reservoir

- 13. Stop the reservoir heater, i.e. set the heater to 20degC (not higher !) and monitor the cool-down process. Wait for the temperate to go down to <30deg C. You may want to use a bucket with water to cool down the reservoir after carefully removing the heater sleeve (**caution**: hot on the inside).
- 14. In case you want to refill the reservoir close V_{nozzle}, open V_{blocking} and V_{evac-line} and open V_{three-way} to the pump and pump for 20 seconds, then close V_{three-way}, V_{evac-line} and V_{blocking} and transfer more liquid using the transfer arm or the syringe. 11

See next page =>

continue: STOP ENTIRE LIQUID-TO-GAS JET OPERATION OR MAKE A REFILL

In case you DO NOT want to refill:

- Step 1: Clean the gas lines

- 15. Keep Heaters of outside and inside gaslines on
- 16. Close V_{blocking}
- 17. Open V_{evac-line}
- 18. Open V_{three-way to forepump}
- 19. Pump out as long as you can (>1day if possible)

- Step 2: Pump out the Reservoir

- 20. Make sure V_{nozzle} is closed
- 21. Wear your PPE (Gloves, Glasses, etc.): Open C_{reservoir-drain} and drain the liquid into a beaker
- 22. Open C_{dry-out} and attach dry gas with reasonable flow which you can control by opening V_{dry-out}
- 23. Open V_{evac-line}
- 24. Open V_{blocking}
- 25. Close V_{three-way} to the pump just a little bit to give some gas ballast; watch for liquid coming out of the pump exhaust
- 26. Let it run for 2 to 12 hours
- 27. Now detach dry gas and close V_{dry-out}, C_{dry-out} and C_{reservoir-drain}. You can now pump out the reservoir by opening V_{three-way} for at least 3 minutes. Optional: Close V_{three-way} afterwards, open V_{protect} and V_{bypass} to pump with scroll.

CLEAN-UP PROCESS

Clean out the Supply Vessel

- 1. Close V_{transfer}
- 2. Wear your PPE (Gloves, Glasses, etc.): Open C_{supply-drain}
- 3. Open V_{drain} and empty liquid into a beaker
- 4. Attach a dry gas to C_{supply-drain} and dial in a decent flow by opening V_{dry-out}
- 5. Let it run for 2 to 12 hours

Clean the Syringe

- 1. Wear your PPE (Gloves, Glasses, etc.)
- 2. Empty the syringe in the fume hood by retransferring as much liquid into a beaker as possible
- 3. Note: There is likely still <5ml of liquid in the syringe even if the plunger is all the way in.
- 4. Open the syringe in the fume hood by taking out the plunger back-stop (using a screwdriver to take of the 6 little screws) and drain all fluids
- 5. Clean syringe with isopropanol using a soaked tissue and long tweezers (note: don't scratch the stainless steel surface)
- 6. Use silicon (vacuum) grease to lightly lubricate the two O-rings on the plunger

Regenerate the Forepump(s)

In case you polluted the forepumps with any condensable gases open the gas ballasts or detach forepump and let it pump a small amount of (dry) air, i.e. you need to restrict the flow with either a small pin hole in a Kwik-Flange plastic cap or a screw with a washer in the (red water) hose or similar.